Investigation on Fluid Flow Characteristics of the Orifice in Nuclear Power Plant
نویسندگان
چکیده
The present paper represents a methodology for investigating flow characteristics near orifice plate by using a commercial computational fluid dynamics code. The flow characteristics near orifice plate which is located in the auxiliary feedwater system were modeled via three different levels of grid and four different types of Reynolds Averaged Navier-Stokes (RANS) equations with proper near-wall treatment. The results from CFD code were compared with experimental data in terms of differential pressure through the orifice plate. In this preliminary study, the Realizable kand the Reynolds stress models with enhanced wall treatment were suitable to analyze flow characteristics near orifice plate, and the results had a good agreement with experimental data.
منابع مشابه
Influence of nozzle geometry and injection conditions on the cavitation flow inside a diesel injector
Cavitation and turbulence in a diesel injector nozzle has a great effect on the development and primary breakup of spray. However, the mechanism of the cavitation flow inside the nozzle and its influence on spray characteristics have not been clearly known yet because of the internal nozzle flow complexities. In this paper, a comprehensive numerical simulation is carried out to study the intern...
متن کاملSafety Analysis of Spent Fuel Transportation Cask of Bushehr Nuclear Power Plant through the Passing of Fire Tunnel with ANSYS®10.0
The spent fuel assemblies (FAs) of Bushehr Nuclear Power Plant are planed to be transported by TK-13 casks. Each spent fuel transportation cask holds 12 spent FAs and has a thick steel container to provide shielding. The calculations have been performed for FAs with burn ups of 60 MWd/kg and a 3-years cooling period. The ANSYS®10.0 general finite element analysis package was se...
متن کاملFluid Dynamics in a Copper Converter: an Investigation on Mixing Phenomena in an Experimental Model
In this study, the mixing phenomena and fluid dynamics in a copper converter have been experimentally investigated using a physical model. The physical model is a 1:5 horizontal tank made of Plexiglas. The mixing phenomena have been characterized by experimentally measuring the mixing time using a tracer dispersion technique. Moreover, the effects of the air flow rate and lance submergence on t...
متن کاملInvestigation on Turbulent Nanofluid Flow in Helical Tube in Tube Heat Exchangers
In this study, the thermal characteristics of turbulent nanofluid flow in a helical tube in the tube heat exchanger (HTTHE) were assessed numerically through computational fluid dynamics (CFD) simulation. The findings of both the turbulent models: realizable k-epsion (k-ε) and re-normalisation group (RNG) k-epsilon were compared. The temperature distribution contours show that realizable and RN...
متن کاملInvestigation the effects of injection pressure and compressibility and nozzle entry in diesel injector nozzle’s flow
Investigating nozzle’s orifice flow is challenging both experimentally and theoretically. This paper focuses on simulating flow inside diesel injector nozzle via Ansys fluent v15. Validation is performed with experimental results from Winkhofler et al (2001). Several important parameters such as mass flow rate, velocity profiles and pressure profiles are used for this validation. Results includ...
متن کامل